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LEmER TO THE EDITOR 
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packing and space-filling bearings 
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HLRZ, Forschungszentrum liilich, Postfach 1913, 5170 Jiilich, Germany 

Received 7 December 1990, in final form 20 February 1991 

Abstract. We present high precisian numerical values for the franal dimensions of Apol- 
Ionian packing and various space-filling bearings which might have application for 
mechanical gearworks, far turbulence or for tectonic motion. We find for the simplest 
Apollonian packing d,= 1.305 684+O.W0 010. 

Tiling space with circles by putting them iteratively in each hole between three mutually 
touching circles and the circle that tangentially touches all three is an old problem 
often known under the name of ‘Apollonian packing’ (see figure l (a)) .  It dates hack 
to Apollonius of Perga who lived around 200 BC and much work has been done since 
as briefly presented for instance by Mandelbrot [l]. The space left over between circles 
is a fractal but despite much effort it has not yet been possible to determine the value 
of the fractal dimension analytically. Only rigorous hounds are known [2,3] 1.300 197 < 
df<1.314 534 and Mandelbrot [l] cites a numerical estimate of df==1.3058 as due to 
Boyd. 

Is it also possible to tile a plane with circles touching one another, called ’space- 
filling bearings’ (SFB), such that all the area is covered with circles (see figure l ( b ) )  
[3,4] of all sizes. This rather exotic question can arise in various contexts. One could 
imagine the circles to he eddies on the surface of an incompressible fluid and then 
ask if the fluid motion can be totally decomposed into stable eddies. This could he 
thought of as a simple model for turbulence [SI. Or, one could think of mechanical 
roller bearings between two moving surfaces, like two tectonic plates, and then ask if 
one can completely fill the space between the rolling cylinders with other rolling 
cylinders such that no cylinder exerts any frictional work on another one. This could 
explain the behaviour of seismic gaps [61. 

We will in the following describe how different SFB packings are constructed and 
classified for which Apollonian packing comes out as a special case. What follows 
concentrates on the numerical calculation of porosities and size distributions of the 
packings. Using the ratio method we get accuracies for the fractal dimension in the 
fourth digit. Finally we conclude. 

W e  first describe the construction of SFB packings in general following the algorithm 
introduced in [3,4]. This is done using circular inversions which is a particular case 
of Mobius transformations [7]. In an inversion around a circle of radius r a point is 
mapped into its image point such that both points lie on the same line connecting the 
centre to infinity and their distances d and d’ from the centre fulfil d .  d’= r2. Using 
this relation one gets that a circle of radius r and centre at (x, y )  is mapped into 
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( b )  
Figure 1. ( a )  Apollonian packing, ( b )  space.filling bearing of the first family for n = m = 0. 

another circle of radius r’ and centre at (x’. v’) under a circular inversion around a . ., . 
circle of radius r, and centre at (xc, yc)  as 

2 2 r, rc  
x’=x,+- d 2 -  r 2  (x-xc) y ’ = y , + -  d 2 -  r2 (Y 

and 

rf r- 
d Z -  r2 

where d is the distance between ( x , y )  and (xc ,y , ) .  
In a space filled with mutually touching circles one can rm a loop whi - passes 

through successive touching points of circles. In the case of SFB each circle rolls on 
the neighbouring touching circles. Therefore for a slipless motion each circle has to 
move in the opposite direction of the neighbouring circles. This condition imposes the 
restriction that loops in SFB must have an even number of circles [3,4]. We will consider 
here the construction of SFB packings on the strip geometry with only fourfold loops. 
All these packings are periodic along the strip length. 
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On the strip geometry one starts with two horizontal lines at unit distance apart 
and within them places two seed circles A and B touching each other and touching 
the top and the bottom lines respectively. The parallel lines can be thought of as two 
circles of infinite radii touching at infinity and therefore along with A and B one gets 
the initial four-loop configuration with four circles. All four-loop packings on a strip 
are divided into two families. In the first family the sum of the radii A and B is greater 
than the strip width and in the second family it is equal to  the strip width [3,4]. 

fi!! 2 strip. E:& 
member of the family is characterized by two non-negative integer parameters n and 
m. Given the values of n and m one obtains a set of constants, namely, RA and RB 
the radii of the seed circles A and B, r, and r, the radii of the inversion circles and 
the period 2a [3,4]. Relations of these constants and n and m are discussed later. We 
first describe the construction of an arbitrary member n and m, assuming these coktants 
are known. 

We describe in the following the construction of one unit of packing on the strip 
whose repetition fills the whole strip. This is done by generating two trees of circles 
following A and B. As these two trees are independent we construct them one after 
another and join them together afterwards. We fix our x axis on the bottom line and 
the y axis passes through the centre of the circle A. From the seed circle A we construct 
the first generation of circles as in figure 2. 

The circle A (with radius RA)  is first inverted around an inversion circle of radius 
r, (*RA) and centred at (2a, 1) to get the circle A, (see figure 2(a)). This circle A, is 
then reflected around the reflection plane at x =  a to get the circle A,. This circle A, 
is then again inverted at the same inversion circle to get A,. This process of alternate 
inversion and reflection is continued until one reaches the invariant circle which on 
further iteration (inversion or reflection) produces the same circle. For a particular 
value of n one gets ( n  + 1) circles (including the seed A)  to reach the invariant circle 
after n iterations. All circles generated until now belong to the first generation. In 
figure 2(a) we describe the construction for n = 3. The first generation circles are then 
inverted around a circle of radius rB centred at (3a, 0). The resulting circles are then 
reflected around the plane x = 2a. These successive inversions and reflections are 
continued (m + 1) times to get the invariant circles. All circles generated until now 
after first generation constitute the second generation of circles. Next all circles 
generated so far are alternately inverted and reflected around the inversion circle of 
radius r, centred at (4a, 1) and the reflection plane at x = 3a to get the third generation 
of circles. This process continues for many generations to produce the A tree. 

Next we put the seed circle B at (a, R B )  (see figure 2(b ) ) .  For the first generation 
we produce m more circles by successive inversion around an inversion circle of radius 
rB centred at (3a, 0) and a reflection plane at x = i a .  In the same way as beiore higher 
generation circles are produced by shifting the inversion centres and reflection planes 
by (I to the right by alternately changing the inversion circle radii between r, and r, 
and placing them at top and bottom line to produce the 5 tree. 

Finally we superpose the A and B tree of circles (see figure Z(c)) and then the 
circles are shifted depending on the generation they were produced by proper transla- 
tions to piace inem within x=O and x = j a  (bymodia j  (see iigure iicjj.  Tiis 
constitutes the repetition unit of the packing and the whole packing of the strip is 
generated by successive translation of this unit to the right and left. 

To uniquely define a packing one just needs the two integer parameters n and m 
(see figure 3). Given them, one gets the radii of the seed circles RA and R,, the radii 

--. In the ...- f ird _..". fnmilv there ...-.- are ~n infinite .........- " m e r  ,._...l-. of w:ys one 

/' 
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Figure 2. Construnion of the n = 3, m = 2 SFB packing. ( a )  and ( b )  show circles produced 
up to several generations starting from the seed circles A and B. In ( e )  these two trees are 
superposed. 

of the inversion circles rA and r, and the period 2 4  fixed numbers. Calculation of 
these constants uses the fact that for the first generation after nth iteration (successive 
inversion and reflection) one gets the invariant circle of A and after mth iteration the 
invariant circle of B is obtained (see [3,4] for derivation of these equations). 

Let us define z. =cosC2[r/(n+3)]. One then obtains for the half period o of the 
first family 

.-2= 2" +I, - 1 (3) 
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Figure 3. Nine different combinations of n and m of the f ist  family 

and the radii of inversions 

and the radii of the circles A and B are given by 

2RA = r> and 2RB = r’,. (5) 

~. It is interestins to note that for n = m = 00 and for n = 0; m = m one obtains the 
classical Apollonian packing. In fact the whole one-parameter family with n = m and 
arbitrary m has threefold loops and is in this sense the full ‘Apollonian family’. It is 
obtained in this case as the limit in which one of the four circles in each loop becomes 
infinitely small. 

The packings just constructed are evidently fractal. One way to define their fractal 
dimensions is by introducing a cut-off length E such that one considers in a packing 
exactly those circles that have a radius larger than E. Now one can calculate (on the 
computer) the number N ( E )  of circles per unit area, the sum S ( E )  of the perimeters 
of the circles (‘surface’) per unit area and the ‘porosity’ p ( ~ ) ,  i.e. the area that is not 
covered by circles per unit area. All these quantities can be related to the distribution 
n ( r )  of radii r, i.e. the number of circles of radius r per unit area through: 

If n(r) can be described by a simple power law 
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then one finds 
N( E )  - 
S ( E ) ”  €‘-de with d,= i - 1 ( 8 )  
p (  E )  - E*-df 

where d ,  is the fractal dimension [3]. 
We have calculated the distribution of radii of various packings of the first family 

up to E = 2-22 by producing around 0.5 to 1.5 x 10’ circles using a fully vectorized, 
memory-saving algorithm following the lines used previously. We spent for each 
packing about nine hours on one Cray-YMP processor at HLRZ. 

In figure 4(a) we show N, s and p plotted double logarithmically against the cut-off 
for n = m = 0. The straight lines over several orders of magnitude confirm the power-law 

log N(r) 

5 

L 

log E 

t . :.* 
~ 

0 r , i , i i i , i l i 8  
0 1 2 3 4 5 6 7  

log (Vr )  
Figure 4. Log-log plots o f  ( a )  the number of circles N, the surface I and the porosity p 
as function of the cut-off E ;  ( b )  disk-radius distribution n ( r )  as function of the inverse 
radius r. Both figures are for n = m = 0 of the first family. 
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behaviour. The fact that the porosity goes to zero with E is a numerical verification 
that the packings are space-filling. 

In figure 4(6) we see the disk radius distribution n ( r )  itself, binned in powers of 
two, plotted double logarithmically against the inverse of the radius r. For large radii 
the events are more rare and the binning produces deviations from the straight line 
that we might call corrections to scaling. All these calculations are done in the quartic 
precision (real words of 16 bytes) so as to  avoid any contamination of numerical 
inaccuracy. Therefore our data are as good as getting them exactly. We give the data 
for the distribution n ( r )  in table 1 for the members (0,O) and (m, m). 

We analysed our data by the methods used in the series analysis of exact enumeration 
data. Though the double logarithmic plots of the three moments and the distribution 
function n ( r )  are nice straight lines, we calculated the successive slopes of these curves 
which using (8) give effective fractal dimensions den. In figure 5 we see den is plotted 
against 1/1 where de, is obtained from successive slopes of N ( E ) ,  S ( E )  and P ( E )  for 
the values of 2-'+' and 2-' and for n ( r )  we take the successive slopes of the Ith and 
the (I - 1)th bin, for n = m = 0 and the Apollonian case n = m = 00. We see that the 
values of de, obtained from N ( E ) ,  P ( E )  and n ( r )  fluctuate widely for small I values 
but this fluctuation decreases rapidly with increasing I and approaches the same 
asymptotic d, value for different curves. However de, values obtained from S ( E )  

monotonically decrease with increasing I and approach the value obtained from other 
moments but even at the largest value of I it gives a much higher value and therefore 
we discard this result in estimating dr. To calculate the asymptotic value of dr we 
average over the den values for the largest I (=22) for N ( E ) ,  P ( E )  and n ( r )  and for 

Table 1. The distribution of circle radii n ( r )  as a function o f  the inysrse radius ( I j r ) .  
Second and third columns give the number of circles whose inverse radii are within 2I-l 
and (2'- I )  for n = m = O  and n = m =a. 

I ( 0 , O )  (a. a) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
IO 
11 
12 
13 
14 
1s 
16 
17 
18 
19 
20 
21 
22 

0 
1 
0 
2 
5 

10 
32 
92 

238 
648 

I748 
4 666 

12 702 
34 092 
92 102 

248 278 
670614 

1 809 056 
4 882 558 

13 175 816 
35 546 746 
95 924 460 

0 
1 
2 
0 
IO 
14 
44 
88 

250 
570 

1470 
3 606 
8 938 

21 830 
54210 

134018 
331 778 
818054 

2 024 740 
5 003 640 

12 367412 
30 575 024 
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1.438 

1.436 1.434 
I 

2 
1.432 

1.43 

1.428 

I ' I ' I ' I ~  

- (4 

- - /i(:; : 
- 

- 

P ( e )  . 

- 

- 

I I I , l / I ,  

1.316 1 ' 1  

1.312 - - . ( b )  /$(;I)'; 
1.308 - - 

3 
1.304 - - 

1.3 - - 

. - 
1.296 I I I I I 1  0 8  

Table 2. Fractal dimensions obtained for various packings of the f i s t  family 

0 0 1.4321 -t0.0005 
0 I 1.4057-tO.0005 
I I 1.4123 -tO.OOOS 
m 2 1.3397-tO.0005 
m m 1.3057-tO.0005 
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the error we put the half of the difference in maximum and minimum of de, for the 
last three or four I values. In table 2 we present our final values for various packings. 

The fractal dimension one obtains for the Apollonian packing, i.e. n = m = m, agrees 
well with Boyd’s value [l]. For the first family the fractal dimension obtained con- 
tinuously increases with decreasing n and m. It is interesting to note that the fractal 
dimension is not constant within the Apollonian family (n ,  00). 

If instead of looking at all circles larger than E one takes all circles produced up  
to a given level of the iteration then multifractality of the Apollonian packing has been 
observed [9]. Also the set of the touching points has been studied and it was found 
[lo] to be multifractal for a fixed number of iterations but not multifractal for fixed 
cut-off. 

In [3] the observation was made that numerically the fractal dimensions one obtains 
from the various moments of (5) did slowly decrease with increasing order of the 
moment. We think that this was due to numerical inaccuracies in taking into account 
eventual curvatures coming from corrections to scaling. 

We have seen that the packings are fractal with dimensions that for the first family 
lie between 1.3057 and 1.4321. The distribution of radii is numerically compatible with 
a power law n ( r )  - rFi. Since all discs rotate with the same tangential velocity U we 
can calculate the kinetic energy E ( r )  of discs of radius r as E ( r ) =  ?rpu2rzn(r)  ( p  is 
the density of the material) and from there the energy spectrum E ( k )  dk  as a function 
of the wavevector k = r - ’ .  We find: 

(9) 
Using the values of df calculated here we see that although none is exactly 4/5 their 
values are not far from Kolmogoroff scaling of the energy spectrum of homogeneous 
fully developed turbulence [6]: E ( k )  d k -  k-’” d k  This might be a coincidence but 
might also have a more profound meaning, giving a geometrical interpretation of 
turbulence in the picture of the transfer of energy to smaller and smaller eddies in the 
inertial regime. One could also imagine a random mixture of all the packings [4] such 
that the effective dimension actually coincides with 4/3. 

We would like to thank P Grassberger for sending us the computer program for 
Melzak‘s algorithm and for many useful discussions. We also thank the referee for 
useful comments. 

E ( k )  d k -  ki-4dk = kdl-3 dk 

Nole added in proox After submission of this paper, P Grassberger pointed out a very simple algorithm by 
Melzak [ I l l  for generating packing patterns for the Apollonian case n = m = m. Using this algorithm we 
simulated Apollonian packings up to E = 2?s.-’b.-2’ , the last one using 5.23 days of Sun4 CPU. From these 
new data we conclude a value of 1.305 68410.000 010 for the fractal dimension of the Apallonian packing. 
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